
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 30, NO. 4, APRIL 2020 1065

Optimal Discriminative Projection for Sparse
Representation-Based Classification

via Bilevel Optimization
Guoqing Zhang , Huaijiang Sun, Yuhui Zheng , Guiyu Xia , Lei Feng , and Quansen Sun

Abstract— Recently, sparse representation-based classifica-
tion (SRC) has been widely studied and has produced state-of-
the-art results in various classification tasks. Learning useful and
computationally convenient representations from complex redun-
dant and highly variable visual data is crucial for the success
of SRC. However, how to find the best feature representation
to work with SRC remains an open question. In this paper,
we present a novel discriminative projection learning approach
with the objective of seeking a projection matrix such that the
learned low-dimensional representation can fit SRC well and that
it has well discriminant ability. More specifically, we formulate
the learning algorithm as a bilevel optimization problem, where
the optimization includes an �1-norm minimization problem in
its constraints. Through the bilevel optimization model, the rela-
tionship between sparse representation and the desired feature
projection can be explicitly exploited during the learning process.
Therefore, SRC can achieve a better performance in the trans-
formed subspace. The optimization model can be solved by using
a stochastic gradient ascent algorithm, and the desired gradient
is computed using implicit differentiation. Furthermore, our
method can be easily extended to learn a dictionary. The extensive
experimental results on a series of benchmark databases show
that our method outperforms many state-of-the-art algorithms.

Index Terms— Sparse representation, discriminative projec-
tion, bilevel optimization, dictionary learning.

I. INTRODUCTION

OVER the past years, as a promising technique for repre-
senting high-dimensional data efficiently and providing

resilience against noise, sparse coding has been successfully
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applied in various computer vision and pattern recognition
tasks, such as face recognition [1], [2], image restoration [3],
object classification [4], [5] and texture classification [6].
Sparse coding aims to represent each input signal as a linear
combination of a few atoms in a dictionary that is usually
over-complete. The coefficients of the linear combination are
called sparse codes. Using sparsity as a prior has led to state-
of-the-art results in many fields [7], [8]. Wright et al. [7]
presented a sparse representation-based classification (SRC)
method for face recognition and achieved promising perfor-
mance. Zhang et al. [8] presented a discriminative, structured
low-rank framework for image classification.

Because of its effective and robust to pose, illumination
and expression as well as occlusion and disguise, SRC has
been widely used in many recognition tasks and has achieved
impressive performance in recent years [9]–[13]. However,
when the training images per subject are insufficient or
the dimension of images is far greater than the training
sample size, the performance of SRC degrades significantly.
Therefore, it is necessary to perform a dimensionality reduc-
tion (feature extraction) that can find low-dimensional and
compact representations before implementing SRC. A num-
ber of dimensionality reduction algorithms have been pro-
posed to reduce the dimensions of the data and improve the
discriminativeness of the features [14]–[17]. However, some
researchers [7] have claimed that the choice of features is
not important for SRC as long as the sparse representation
is correctly computed and the number of features is large
enough. However when the dimension of the sample is rel-
atively small, the classification performances using differ-
ent feature representation methods are significantly different.
Zhang et al. [18] presented an unsupervised dimensionality
reduction method for SRC that improves performance. There-
fore, a well-designed dimensionality reduction method can
improve the performance of SRC.

Recently, some sparse representation-based discrimina-
tive projection methods have been proposed [19]–[24].
Qiao et al. [19] gave a sparsity preserving projection (SPP)
algorithm to preserve the sparse reconstruction relationship of
original data in a new subspace. Gui et al. [20] presented a
discriminant sparse embedding algorithm by adding the dis-
criminant information into SPP. Zhou and Tao [23] presented a
double shrinking model to build a sparse projection matrix for
dimensionality reduction. To further enhance discrimination,
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Feng et al. [24] jointly learned a dimensionality reduction
matrix and a discriminative dictionary for face recognition.
Although these methods achieved very competitive perfor-
mance, none of them have a direct connection to SRC. Thus,
the extracted features may not be optimal for the final clas-
sification. How to extract the most discriminative and robust
features that can best work with SRC is a key issue and a
challenging problem.

Since SRC [7] predicts the class label of a given testing
sample based on the representation residual, Yang et al. [25]
proposed an SRC-steered discriminative projection (SRC-DP)
method. Until now, SRC-DP is the most closely connected
feature representation algorithm with SRC and this idea has
been widely applied in many studies in recent years [26]–[31].
Zhang et al. [27] proposed a multiple kernel learning-based
orthogonal discriminative projection method for image classi-
fication. Yang et al. [28] devised a feature extraction method
based on collaborative representation. Gao et al. [29] pro-
posed a discriminative sparsity preserving projections (DSPP)
method. Yan and Yang [30] presented a sparse discriminative
feature selection method. Although improved performance
has been reported in SRC-DP, it still has several drawbacks.
Firstly, the model of SRC-DP is a trace ratio problem. For
computational convenience, Yang et al. [25] converted this
problem into a more tractable ratio trace problem, which is
solved using the iterated generalized eigenvalue decomposition
algorithm. Its solution may deviate from the original objectives
and lead to uncertainty in subsequent classification task. Sec-
ondly, SRC-DP does not consider the relationship between the
sparse representation and the desired projection matrix, which
is important for improving the performance of SRC.

Therefore, in order to enhance the recognition perfor-
mance of SRC, we propose a novel feature representation
method, namely optimal discriminative projection for sparse
representation-based classification via bilevel optimization
(ODP-SRC). Our method aims to learn a feature projection
matrix such that the extracted features in the low dimensional
subspace can fit SRC well and simultaneously characterize
the discriminant structure embedded in high-dimensional data
well. More specifically, we model our learning algorithm
as a bilevel optimization problem [32], [33] in which the
relationship between sparse representation and the desired
discriminative projection can be expressed explicitly in the
objective function. The optimization model can be solved
efficiently using the stochastic gradient ascent procedure, and
implicit differentiation is employed to calculate the desired
gradient [32], [34]–[36]. Furthermore, the proposed approach
can be easily extended to learn a dictionary simultane-
ously with the projection matrix using the same optimiza-
tion method. Thus, the performance of SRC can be further
improved.

II. RELATED WORK

A. Sparse Representation-Based Classification

Sparse coding has recently attracted much attention
in vision signal and image processing research [1], [37].
Suppose that we have c different classes of subjects,
denote the column-arranged training samples of class i as

Ai = [yi,1, yi,2, · · · , yi,ni
] ∈ Rd×ni , where d is the dimension

of the training data. The entire training set is defined as A =
[A1, A2, · · · , Ac] ∈ Rd×n , where n = ∑c

i=1 ni . Given a test
sample y, we represent y in an overcomplete dictionary whose
basis vectors are training samples themselves, i.e.,y = Aα,
where α = [α1; α2; · · · ; αc] and αi is the sparse coding vector
over Ai . If y is from the i -th class, usually y = Aiαi holds
well. This implies that most coefficients in α are nearly zeros
and only αi has significant nonzero entries. Then the classic
sparse coding problem can be formulated as follows

α̂ = arg min
α

‖y − Aα‖2
2 + λ‖α‖1, (1)

where λ is the regularization parameter for controlling the
sparsity of α.

Once Eq. (1) is solved, the classification can be performed
using minimum class-wise reconstruction error. The recon-
struction error for each class is computed by

ri = ‖y − Aδi (α̂)‖2
2, (2)

where δi (·) : Rn → Rn is the characteristic function which
selects the coefficients associated with class i . The classifica-
tion is made by identi f y(y) = arg mini {ri }.
B. Sparse Representation Classifier-Steered
Discriminative Projection

Let X = [X1, X2, · · · , Xc] ∈ Rm×n be the train-
ing data matrix in the original input space, where Xi =
[xi,1, xi,2, · · · , xi,ni ] ∈ Rm×ni is the matrix formed by the
training samples of class i . Under a linear transformation
y = PT x, each data sample xi j in input space Rm is mapped
into a d-dimensional space Rd . As a result, the data matrix
in the input space is converted into the one in Rd , that
is A = PT X.

In the reduced d-dimensional space, consider the classifi-
cation rule of SRC. For each training sample yi j , leave it out
from the training set and use the remaining training samples to
linearly represent it. By solving the �1 optimization problem
in Eq. (1), a sparse representation coefficient vector αi j can
be obtained. Then, the within-class and between-class recon-
struction residuals in the mapped d-dimensional space can be
defined as:

Jw = tr

⎛⎝∑
i, j

PT (xi j − Xδi (αi j ))(xi j − Xδi (αi j ))
T P

⎞⎠
= tr(PT SL

wP), (3)

and

Jb = tr

⎛⎝∑
i, j

∑
s �=i

PT (xi j − Xδs(αi j ))(xi j − Xδs(αi j ))
T P

⎞⎠
= tr(PT SL

b P), (4)

where tr(·) is the trace operator, δi (αi j ) and δs(αi j ) are vectors
whose only nonzero entries are the entries in αi j associated
with classes i and s(s �= i), respectively. SL

w = ∑
i, j (xi j −

Xδi (αi j ))(xi j − Xδi (αi j ))
T and SL

b = ∑
i, j

∑
s �=i (xi j −

Xδs(αi j ))(xi j − Xδs(αi j ))
T are called the within-class and

between-class sparse scatter matrices, respectively.
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The criterion of SRC-DP is to maximize the between-
class reconstruction residual and minimize the within-class
reconstruction residual and can be expressed as follows:

J (P) = max
P

tr(PT SL
b P)

tr(PT SL
wP)

. (5)

Then, the solution of the optimal projection matrix can be
chosen as the generalized eigenvectors of SL

b ϕ = λSL
wϕ

corresponding to d largest eigenvalues [25]. However, when
SL

w is singular, it is difficult to solve the criterion in Eq. (5)
using the generalized eigenvalue decomposition algorithm.
In addition, it does not considers the relationship between
the sparse representation and the desired projection during the
learning process, thus, the learned features may not be optimal
for SRC.

III. OPTIMAL DISCRIMINATIVE PROJECTION FOR SPARSE

REPRESENTATION-BASED CLASSIFICATION

A. Formulation

Our proposed ODP-SRC aims to learn a projection matrix
such that SRC achieves optimum performance in the trans-
formed low-dimensional space. For each training sample yi ,
similar to SRC-DP, represent it using the remaining training
samples. Once the sparse representation coefficient αi is
obtained, we define the within-class reconstruction residual
in the projected space Jw as follows:

Jw = tr

(
n∑

i=1

(yi − Aδ�i (αi ))(yi − Aδ�i (αi ))
T

)

= tr

(
n∑

i=1

(PT xi −PT Xδ�i (αi ))(PT xi −PT Xδ�i (αi ))
T

)

= tr

(
n∑

i=1

PT (xi − XI�i αi )(xi − XI�i αi )
T P

)

=
n∑

i=1

tr
(

PT Si
wP

)
, (6)

where Si
w = (xi − XI�i αi )(xi − XI�i αi )

T is the within-class
scatter matrix with respect to the i -th sample, and I�i ∈ Rn×n

is a diagonal matrix whose diagonal elements are 1 only when
associated with the non-zero entries of δ�i (αi ), 0 otherwise.
�i is the label of xi and yi .

Similarly, we can define Jb to evaluate the between-class
reconstruction residual as follows:

Jb = tr

⎛⎝ n∑
i=1

c∑
s �=�i

(yi − Aδs(αi ))(yi − Aδs(αi ))
T

⎞⎠
= tr

⎛⎝ n∑
i=1

c∑
s �=�i

(PT xi −PT Xδs(αi ))(PT xi −PT Xδs(αi ))
T

⎞⎠
= tr

⎛⎝ n∑
i=1

PT
c∑

s �=�i

(xi − XIsαi )(xi − XIsαi )
T P

⎞⎠
=

n∑
i=1

tr
(

PT Si
bP

)
, (7)

where Si
b = ∑c

s �=�i
(xi − XIsαi )(xi − XIsαi )

T is the
between-class scatter matrix with respect to the i -th sample,
Is ∈ Rn×n is a diagonal matrix whose diagonal elements
are 1 only associated when with the non-zero entries of δs(αi ),
0 otherwise.

αi is calculated in the transformed d-dimensional space by
using the following �1 optimization problem:

αi = arg min
α

‖yi − Aα‖2
2 + λ‖α‖1

= arg min
α

‖PT xi − PT Xα‖2
2 + λ‖α‖1 (8)

where αi is the sparse representation of PT xi with respect to
PT X. From Eq. (8) we can see that αi is dependent on P;
therefore, we should exploit the relationship between αi and
the desired projection matrix during the learning process.

Thus, we can learn P by maximizing the following objec-
tive function with the sparsity constraint using �1-norm
regularization:

J (P) =
n∑

i=1

max
P

Ji (P) =
n∑

i=1

max
P

tr(PT Si
bP)

tr(PT Si
wP)

s.t .αi = arg min
α

‖PT xi − PT Xα‖2
2 + λ‖α‖1,

A = PT X,

‖A(:, n)‖2 ≤ 1, i = 1, 2, · · · , n. (9)

We can see that the objective function in Eq. (9) is a
bilevel optimization model [33], where optimization problems
(�1-norm minimization in this case) appear in the constraints.
In our method, the upper-level problem J selects the pro-
jection P, and the lower-level �1-norm minimization returns
the sparse codes αi to the upper-level J in order to evaluate
the objective function value. Through the bilevel optimization
model, the relationship between αi and P can be expressed
explicitly in the objective function. The desired projection can
be obtained by using a stochastic gradient ascent algorithm,
as provided in [32], [34] and [35], where backpropagation
and implicit differentiation [38] are adopted to compute the
gradient of Eq. (9) with respect to the projection matrix.

B. Optimization Method

The objective function in Eq. (9) is highly non-convex.
To solve this problem, we can use a stochastic gradient
ascent method for optimization. In Eq. (9), the upper-level
optimization depends on the variable αi , which is the output
of the lower level �1-minimization problem. We assume that
we can define αi as an implicit function αi (P) of P depending
on the input xi . The problem in Eq. (9) may be viewed
solely in terms of the upper-level variable P. Given a feasible
point for P, the ascent method makes an attempt to find an
ascent direction along which the upper-level objective value
increases. The major issue concerning the ascent method is
the availability of the gradient of the upper-level objective,
�P Ji , at a feasible point. Applying the chain rule, we have

�P Ji = ∂ Ji

∂P
+ ∂ Ji

∂Si
b

∂Si
b

∂αi

∂αi

∂P
+ ∂ Ji

∂Si
w

∂Si
w

∂αi

∂αi

∂P
(10)
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where the function is evaluated at the current iteration. The
problem is reduced to computing the gradients of the sparse
representation coefficient αi with respect to the projection
matrix P. Once ∂αi/∂P is computed, we can get �P Ji .

For ease of presentation, we drop the subscripts of αi in the
following. Denote α j is the j -th element of α, and denote �

as the index set of nonzero sparse coefficients of α, i.e., � =
{ j : α j �= 0}. Let α̃ denote the vector built with the elements
{α j } j∈� and X̃ being the corresponding columns (the supports
selected by α̃). It is easy to find that

∂ Ji

∂P
= 2Si

bPtr
(
PT Si

wP
) − 2Si

wPtr
(
PT Si

bP
)

tr
(
PT Si

wP
)2 , (11)

∂ Ji

∂Si
b

= PPT

tr
(
PT Si

wP
) ,

∂ Ji

∂Si
w

= −tr
(
PT Si

bP
)

PPT

tr
(
PT Si

wP
)2 (12)

∂Si
b

∂αi
= ∂Si

b

∂α̃i
=

∑
s �=�i

2(̃IsX̃T X̃̃Is α̃ − Ĩs X̃T xi ), (13)

∂Si
w

∂αi
= ∂Si

w

∂α̃i
= 2(̃I�i X̃

T
X̃̃I�i α̃ − Ĩ�i X̃

T
xi ). (14)

where Ĩ�i and Ĩs consist of the columns of I�i and Is

corresponding to the index set �. To evaluate the gradient in
Eq. (10), we still need to find the derivative ∂αi/∂P. However,
there is no analytical link between α and the projection P.
Following [32] and [34], we overcome this problem by using
implicit differentiation to find the derivative.

For the lasso problem in Eq. (8), we have the following
condition for the optimum α [35], [39].

∂‖PT x − PT Xα‖2
2

∂α j
+λ · sign(α j ) = 0, for j ∈ �, (15)⏐⏐⏐⏐⏐∂‖PT x − PT Xα‖2

2

∂α j

⏐⏐⏐⏐⏐ < λ, for j /∈ �. (16)

Eq. (15) is the stationary condition for α to be optimal [32],
which links α and P analytically on the index set �.
We rewrite this condition as:

X̃T PPT X̃α̃ − X̃T PPT x + λ · sign(̃α) = 0. (17)

It is clear that α̃ is a continuous function of P [40]. Therefore,
a small perturbation on P will not change the signs of
the elements in α̃. As a result, we can apply the implicit
differentiation on Eq. (17) to obtain:

∂{X̃T
PPT X̃α̃ − X̃

T
PPT x}

∂P
= ∂{−λ · sign(̃α)}

∂P
, (18)

which gives:

∂X̃T PPT X̃
∂P

α̃ + X̃T PPT X̃
∂α̃

∂P
− ∂X̃T PPT x

∂P
= 0. (19)

Then, the desired gradient can be solved by:

∂α̃

∂P
= (X̃T PPT X̃)−1

(
∂X̃

T
PPT x
∂P

− ∂X̃
T

PPT X̃
∂P

α̃

)
.

(20)

Algorithm 1 ODP-SRC
Input: training samples {xi }n

i=1, sparsity regularization λ.
Initial: initialize P(0), the number of iterations t = 1,
Repeat

For i = 1, 2, · · · , n do
Computer gradient �P Ji according to Eq. (10);
Update P(t) = P(t) + η · �P Ji , where η is the step size
for stochastic gradient ascent. η = min(ρ, ρi0/ i),
where ρ
is a constant, i0 = t/10.

end for
Update P(t+1) = P(t);
t = t + 1;

Until convergence
Output: Projection matrix P

Since the number of non-zero coefficients is generally far
smaller than the dimension m, the inverse (X̃

T
PPT X̃)−1 is

well-conditioned. Eq. (20) only gives us the derivative function
of α̃ with respect to P, which builds only on the index
set �. To evaluate Eq. (10), we can set the remaining gradient
elements of ∂α/∂P to zero. From a practical point of view,
as long as the approximate derivative given by Eq. (10) is
a feasible ascent direction for the optimization, the ascent
method guarantees that the objective function will always
increase for a feasible step along that direction [35].

With the gradient in Eq. (10) calculated, we employ a
stochastic gradient ascent procedure for updating P.

P(t) = P(t) + η · �P Ji (21)

where η is the step size. The overall optimization procedure
is summarized in Algorithm 1.

C. Dictionary Learning

The dictionary also plays an important role in SRC as it is
expected to faithfully and discriminatively represent the query
image. A dictionary can be learnt with the projection matrix
P fixed, using the same optimization algorithm to iterative
joint learn the projection matrix and dictionary. Denote the
dictionary in the input space as D = [D1, D2, · · · , Dc] ∈
Rm×K , and in the reduced space as B = [B1, B2, · · · , Bc] ∈
Rd×K , where K is the dictionary size. Under a linear trans-
formation, the dictionary in the reduced subspace is rewritten
as B = PT D.

Thus, we can learn P and D by maximizing the following
objective function where the �1-norm regularization is the
sparsity constraint:

J (P, D) =
n∑

i=1

max
P,D

Ji (P, D)

=
n∑

i=1

max
P,D

tr(PT Si
bP)

tr(PT Si
wP)

s.t .αi = arg min
α

‖PT xi − PT Dα‖2
2 + λ‖α‖1,

‖PT D(:, k)‖2 ≤ 1, ∀k ∈ {1, 2, · · · , k}, (22)
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where Si
b = ∑c

s �=�i
(xi −DIsαi )(xi −DIsαi )

T and Si
w = (xi −

DI�i αi )(xi − DI�i αi )
T . Is ∈ RK×K and I�i ∈ RK×K are

diagonal matrices whose elements are 1 only associated with
the s-th and �i classes, s �= �i , 0 otherwise.

In this case, αi is the output of the low-level �1-norm
minimization based on D. We can assume that αi is an
implicit function αi (D) depending on the input xi . Similar
to the projection update, using the chain rule, no matter when
∂αi/∂D is well defined, we have

�D Ji = ∂ Ji

∂Si
w

∂Si
w

∂D
+ ∂ Ji

∂Si
w

∂Si
w

∂αi

∂αi

∂D
+ ∂ Ji

∂Si
b

∂Si
b

∂D

+ ∂ Ji

∂Si
b

∂Si
b

∂αi

∂αi

∂D
(23)

The problem is reduced to computing the gradients as ∂αi/∂D.
It is clear that:

∂ Ji

∂Si
w

= −tr
(
PT Si

bP
)

PPT

tr
(
PT Si

wP
)2 , (24)

∂Si
w

∂D
= 2(DI�i αi − xi )(I�i αi )

T (25)

∂Si
w

∂αi
= ∂Si

w

∂α̃
= 2̃IT

�i
D̃T

(DI�i αi − xi ) (26)

∂ Ji

∂Si
b

= PPT

tr
(
PT Si

wP
) , (27)

∂Si
b

∂D
=

∑
s �=�i

2(DIsαi − xi )(Isαi )
T (28)

∂Si
b

∂αi
= ∂Si

b

∂α̃
=

∑
s �=�i

2̃I
T
s D̃

T
(DIsαi − xi ) (29)

where D̃ consists of the atoms of D in the index set �. To cal-
culate �D Ji , it is still important to compute the derivative
∂αi/∂D.

Exploiting the same optimization method, the desired gra-
dient can be solved by:

∂α̃

∂D̃
= (D̃

T
PPT D̃)−1

(
∂D̃T PPT x

∂D̃
− ∂D̃T PPT D̃

∂D̃
α̃

)
.

(30)

with the gradient in Eq. (9) calculated, the dictionary update
rule is simply:

D(t) = D(t) + γ�D Ji (31)

where γ is the step size set as η.
We adopt a standard iterative learning method to jointly

learn dictionary D and projection P until the algorithm is
convergent. Algorithm 2 summarizes the detailed steps of the
proposed method. Fix D to update P by using Algorithm 1.
When updating D, we fix P, and the algorithm is shown in
Algorithm 2. Since the optimization problem is non-convex,
we can only expect this stochastic gradient procedure to find
a local maximum. Still, numerical simulations have shown
that the algorithm usually converges to a local maximum in
a few iterations. To empirically show the convergence of our

Algorithm 2 ODP-SRC-DL
Input: Training set {xi }n

i=1, parameters λ, η, γ , and initial
dictionary D(0)

Output: Projection matrix P, learned dictionary D.
Step 1 (Initialization)

Initialize projection P0, iteration times t = 1.
Step 2 (Optimization)

Repeat
Solve D(t) with fixed P(t−1) via Eq. (31)

D(t) = D(t) + γ�D Ji

Project the columns of D(t) onto the unit circle;
Solve P(t) with fixed D(t) by

P(t) = P(t) + η�P Ji

t = t + 1;
until convergence

Step 3 (Output)
Output P = P(t), D = D(t)

method, we take some examples to display the convergence
behaviors of ODP-SRC-DL on the AR, Extended Yale B [43],
LFWa [44] and UCF 50 action [45] databases.

The curves of the objective function value and the corre-
sponding recognition rates are shown in Fig. 1. It seems that
in all experiments our method can achieve stable performance
in a few iterations. When the objective function value varies
in a flat region, we think the proposed method can obtain
a proper and reliable solution and stop the iteration. Also
the recognition rate varies only within a small range after
several iterations. We note that on the AR and Extended Yale
B databases, our method achieves high recognition rate at
the initialized iteration. The main reason is that we select
a well initial projection matrix for our method, i.e., we use
the initial SRC-DP algorithm [25] to initialize the projection
matrix P(0). Let us take an example to display the performance
of ODP-SRC-DL by using different initializations of P(0).
Fig. 2 shows the recognition rates of ODP-SRC-DL under
different initialization matrices. We observe that selecting
different P(0) result in different performances in the initial
iteration. Using the initial SRC-DP algorithm to initialize the
projection matrix can achieve high recognition rate. However,
after sever iterations, the final recognition results tend to be
consistent.

Note That: We need to initialize the dictionary D(0) to
learn the sparse coding coefficient α for every training
sample. For D(0), we employ the proposed method in [41]
to learn the dictionary class by class and then combine
the specific-class dictionary as the final dictionary, D(0) =
[D(0)

1 , D(0)
2 , · · · , D(0)

c ]. Thus, each dictionary atom is initial-
ized and labeled based on the corresponding class. Further-
more, during the entire learning process, the label of each atom
remains fixed, although dk , k = 1, · · · , K is updated in each
iteration [36], where dk are the dictionary atoms. The main
reason for this is that in each iteration step, we only select the
dictionary atoms corresponding to the indices �, which as the
index set of the nonzero sparse coefficient of α. According
to the sparse representation theory, most coefficients in α
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Fig. 1. The top row shows the objective function value vs iterations; the bottom row shows the recognition rate vs iterations in the (a) AR, (b) Extended
Yale B, (c) LFWa and (d) UCF 50 databases.

Fig. 2. Recognition rate vs iterations under different initializations of P(0).

are nearly zero, and only the coefficients associated with its
corresponding class have significant nonzero entries. Thus,
in each iteration, the selected dictionary atoms have the same
labels as the selected nonzero coefficients.

On the other hand, our method aims to maximize
between-class sparse reconstruction residual and simultaneous
minimize the within-class sparse reconstruction residual in the
transformed space. This encourages the result that dictionaries
associated with the corresponding class can well represent the
training samples of this class, and cannot represent training
samples of other class well. Hence, the learned dictionary has
better discrimination capability.

IV. EXPERIMENTAL RESULTS

In this section, we verify the performance of ODP-SRC
in various classification tasks, including face recognition,
object recognition, action classification, and scene classifica-
tion. For face recognition, we adopt three commonly used
face databases, including AR [42], Extended Yale B [43]
and LFWa [44]. For action recognition, we use the UCF
50 [45] database to evaluation our method. Finally, the Caltech
101 [46] and 15 Scene Categories [48] databases are used
for object recognition and scene recognition, respectively. For
each database, the average recognition rate is used as the
criterion for comparing the performance of different state-of-
the-art algorithms.

A. Parameter Setting

There are three parameters in the proposed model: λ, η,
and γ . To achieve the best performance, in all the experiments,
the sparsity regularization parameter λ in the training and
testing phases is determined via five-fold cross-validation.
For face recognition, we set λtrain = λtest = 0.005 for
the AR and Extended Yale B databases, and λtrain = 0.05,
λtest = 0.001 for the LFWa database. For action recognition,
we set λtrain = 0.001, λtest = 0.005 for the UCF50 database.
For object recognition, we set λtrain = λtest = 0.001 for
the Caltech 101 database, and λtrain = λtest = 0.001 for the
scene experiment. η is the learning rate [36], [49] for updating
projection P, and we set η as min(ρ, ρi0/ i), where i repre-
sents the subscript of each training sample. In the example
xi , i = 1, 2, · · · , n, where n is the total number of training
samples. ρ is a constant, selected from {10−6, 10−5, · · · , 10},
i0 = t/10, and t is the number of iterations. Similarly, γ is
the step size for updating dictionary D, and we set γ = η.

B. Face Recognition

1) AR Dataset: We choose a non-occluded subset
(14 images per subject) from the AR database, which con-
sists of 1680 face images of 120 subjects (65 males and
55 females). The face portion of each image is manually
cropped to 50 × 45 pixels. To clearly illustrate the advantage
of our method, some representative feature extraction algo-
rithms, including SRC-steered discriminative projection (SRC-
DP) [25], trace ratio optimization-based SRC-DP (TR-SRC-
DP) [27], sparsity preserving projection (SPP) [19], local-
ity preserving projection (LPP) [16], and linear discriminant
analysis (LDA) [15] are used for comparison.

We randomly select ni = 3, 4, 6, and 7 samples per
subject for training, and test on the rest. Therefore, the total
sizes of the training samples are 360, 480, 720, and 840.
To make a fair comparison with SRC-DP [25] and TR-
SRC-DP [27], and following the experiment settings in [25]
and [27], we first perform PCA to reduce the dimension
to 200 before implementing SRC-DP, SPP, LPP, LDA, TR-
SRC-DP, and the proposed ODP-SRC. For LPP, we set the
number of nearest neighbors as ni − 1, where ni refers to
the training samples per subject. Finally, SRC is employed for
classification. Each split is repeated 10 times, and we evalu-
ate the performance of these methods according to different
dimensions, which vary from 5 to 160 with increments of 5.
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Fig. 3. Recognition rate versus different feature dimensions in the AR database. The number of training samples per class are (a) 3, (b) 4, (c) 6, (d) 7.

TABLE I

RECOGNITION RATES (%) WITH DIFFERENT NUMBER OF

TRAINING SAMPLES ON THE AR DATABASE

Table I lists the maximum recognition rate of each method
and the corresponding dimensions. We can see that ODP-SRC
obtains the best recognition rate and is consistently better than
other feature extraction methods, irrespective of variations in
training sample sizes. Consequently the learned features fit
SRC well in the transformed subspace, which can improve
the performance of SRC.

We also evaluate the performance of related approaches
according to different dimensions. Fig. 3 shows the exper-
imental results. It is clear that with the increase of the
feature dimensions, the performance of our method and that of
other methods also increase, and ODP-SRC always performs
the best. Furthermore, when the projected samples are in
a relatively low subspace, ODP-SRC performs significantly
better than SRC-DP and TR-SRC-DP [27]. This is because by
using the bilevel optimization model, the relationship between
the sparse representation and the projection is considered in
our learning algorithm. Thus, the learned low-dimensional
representations can characterize the discriminant structure
embedded in high-dimensional data well and have strong
discriminant ability.

In order to comprehensively analyze the advantages of the
bilevel optimization model, we introduce dictionary learning
into our framework, denoted as ODP-SRC-DL. We randomly
select 7 samples per class as training samples and evaluate
ODP-SRC-DL using different dictionary sizes. ODP-SRC uses
the original samples as the dictionary. The recognition results
are plotted in Fig. 4. We can see that in all cases, ODP-SRC-
DL outperforms ODP-SRC. It is noteworthy that even with
the atom number set as 3, the performance of ODP-SRC-DL
improves on ODP-SRC by at least 5%.

2) Extended Yale B Dataset: The Extended Yale B face
database contains 2414 frontal face images of 38 people.
There are about 64 images of each person. The cropped
and normalized face images are captured under various

Fig. 4. Recognition rate versus the different numbers of dictionary atoms in
the AR database.

Fig. 5. Recognition rate versus different (a) training sample size, and
(b) feature dimensions (16 samples per class).

laboratory-controlled lighting conditions. For computational
convenience, these images are resized as 48 × 42.

Following the experimental set ups of [25], we evaluate our
method by using three setups. In the first setup, we use the first
8, 12, 16, 20, 24, 28, 32 images per subject for training, and we
test on the rest. LDA, LPP, SPP, SRC-DP, TR-SRC-DP, and the
proposed ODP-SRC methods are used for feature extraction.
Before implementing the evaluating algorithms, we first use
PCA to project all the samples respectively into 100, 120,
140, 160, 180, 200, and 220 dimension spaces according to
the number of training samples per class. Finally, SRC is used
for classification. Fig. 5(a) illustrates the recognition rate of
each method with respect to different samples. It can be seen
that ODP-SRC achieves the best result and consistently out-
performs TR-SRC-DP, SRC-DP, and other methods, especially
when the number of training samples per class is relative small.
With the increasing training sample sizes, the performance
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Fig. 6. Recognition rate (%) versus different number of training samples on
Extended Yale B database.

of all methods also increase. Overall, our method is still the
best. These experimental results are consistent with the results
obtained for the AR database.

In the second set up, we evaluate the effect of ODP-SRC
using different dimensions when the number of training
samples per class is 16. We perform ODP-SRC in the
PCA-transformed space. The dimension varies from 5 to 140
with increments of 5. From Fig. 5(b) we can see that our
ODP-SRC achieves high recognition rate under different fea-
ture subspaces. This indicates that our method is able to find
an appropriate low-dimensional representation for SRC.

Finally, we verify the effect of our ODP-SRC-DL method
versus different dictionary atoms. We randomly select 32 sam-
ples per subject as training data, the remaining samples being
the testing data. The dictionary size varies from 8 to 32 with
increments of 4. ODP-SRC uses the original training samples
as the dictionary, and we randomly select 8, 12, 16, 20, 24,
28, 32 training samples as the dictionary atoms. The average
recognition rates of each algorithm are shown in Fig. 6. It can
be seen that the ODP-SRC-DL always outperforms ODP-SRC,
especially when the dictionary size is small. This means that
simultaneously learning the dictionary and projection matrix
can further improve classification accuracy.

3) LFW Dataset: LFW [47] is a large-scale database, which
contains variations in pose, illumination, expression, mis-
alignment, and occlusion. The aligned labeled face in the
wild (LFWa) [44] dataset is an aligned version of LFW.
We use 143 subjects with no less than 11 samples per subject
(4,174 images in total) in LFWa dataset to perform the
experiment. For each person, the first 10 samples are selected
as the training samples and the rest are used for testing.
A histogram of uniform-LBP is extracted by partitioning a
face image into 10 × 8 patches.

From the experimental results of the AR and Extended
Yale B databases, we can see that our feature extrac-
tion algorithm is very effective for improving the per-
formance of SRC, and ODP-SRC-DL always outperforms
ODP-SRC. In this subsection, in order to further evaluate
the performance of ODP-SRC-DL, we compare our method
with several of the latest dictionary learning methods, such
as Discriminative K-SVD (D-KSVD) [50], Label Consistent
K-SVD (LC-KSVD) [36], Fisher discrimination dictionary

TABLE II

RECOGNITION RATE (%) ON THE LFWA DATABASE

learning (FDDL) [51], latent dictionary learning (LDL) [52],
and the latest bilevel model-based discriminative dictionary
learning method (BMDDL) [53], which directly minimizes the
classification error in the upper level and uses the sparsity
term and the Laplacian term to characterize the intrinsic data
structure in the lower level. Furthermore, we also compare
our method with SRC [7] as the baseline. The number of
dictionary atoms is set as the number of training samples in
the same class. We reduce the feature dimension to 1000, and
other methods are performed in the PCA-transformed space.

The experimental results are summarized in Table II. We can
observe that ODP-SRC achieves at least a 3% improvement
compared with SRC. This demonstrates that considering the
relationship between sparse representation and the desired pro-
jection is crucial for improving the performance of SRC. ODP-
SRC-DL also achieves a 2.5% improvement compared with
ODP-SRC, indicating that learning a dictionary is meaningful
for improving the classification performance. In addition,
ODP-SRC-DP outperforms all the dictionary learning methods
and results in a 1.0% improvement compared with BMDDL.
Although BMDDL also uses the bilevel model to learn a
dictionary, it is designed based on a simple linear predictive
classifier that ignores the within-class and between-class dis-
criminative information during the learning process. In com-
parison, our method is designed based on the decision rule of
the SRC, not only considering the within-class information,
but also considering the between-class relationship. Secondly,
BMDDL ignores the importance of feature learning, while our
method formulates the discriminative projection and dictionary
learning into an optimization framework. Thus the learned
features and dictionary are complementary to each other and
can capture more discriminative information in the reduced
space, which is meaningful in classification.

C. Action Recognition

We use the UCF 50 dataset [45] for action recognition, one
of the largest action recognition databases, with 50 action cate-
gories, consisting of 6617 realistic videos taken from YouTube,
such as Baseball Pitch, Basketball Drumming, Biking, Diving,
Tennis Swing, etc.

We directly use the action bank feature vector provided
in [59] to evaluate our method and the related methods.
Following the common experiment settings in [53] and [59],
we reduce the feature dimension to 1500, and the dic-
tionary size is 1500. We take the ODP-SRC-DL through
five-fold group-wise cross validation, and D-KSVD [50],
LC-KSVD [36], FDDL [51], task-driven dictionary learning
(TDDL) [49], BMDDL [53], SRC [8], and other related meth-
ods are used for comparison. The comparison results are
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TABLE III

RECOGNITION RATE (%) ON THE UCF50 ACTION DATABASE

TABLE IV

RECOGNITION ACCURACY (%) ON CALTECH 101 DATASET

summarized in Table III. We can see that ODP-SRC-DL out-
performs the competing dictionary learning methods. This val-
idates the superiority of ODP-SRC-DL in classifying actions.

D. Object Recognition

The Caltech 101 database [46] includes images
of 102 classes (101 common object classes and a background
class) collected randomly from the Internet. The number of
images in each class varies from 31 to 800 (9,144 images in
total). The size of each image is roughly 300 × 300 pixels.

Following the common experimental settings in [25]
and [53], we randomly select 30 samples per category for
training and test on the rest. For fair comparison, we test our
method with spatial pyramid features, as used in [25] and [53].
Since the feature dimension is too high, we reduce the feature
dimension to 1500, and other methods use the PCA-reduced
features. The dictionary size is 3060.

Table IV summarizes the comparison results, SRC [7],
D-KSVD [50], LC-KSVD [36], FDDL [51], BMDDL [53],
TDDL [49], and some state-of-the-art algorithms are used for
comparison. As Table IV shows, OPD-SRC-DL obtains the
best results, improves on the second-best method by around
1.4%. There are two reasons for this improvement. The first
reason is that the learned projection matrix and dictionary
are jointly learnt, and the former leads to features being able
to capture more discriminative information for objects, while
the later can encode a compactness coding coefficient in the
projected space. In addition, the relationships between the
sparse representation and the desired projection and dictio-
nary are considered during the overall learning process; thus,
the learned projection and dictionary are suitable for SRC and
simultaneously improve its performance.

To further analyze our experiments, Fig. 7 shows the
confusion matrix between all classes for the best results
(i.e., 76.9%). The classification accuracies of each class are
displayed in Fig. 8, where recognition accuracies are sorted in
ascending order. There are 9 categories in total, which achieve

Fig. 7. Confusion matrix on the Caltech 101 dataset.

Fig. 8. Recognition rate (%) of each class on the Caltech 101 dataset.

100% accuracy. Fig. 9 shows a few of the easiest and hardest
object subjects.

E. Scene Classification

The fifteen scene categories database was first introduced
in [48]. Each category contains around 200 to 400 images,
and the average image size is around 250 × 400 pixels. This
database contains 15 scenes, including kitchen, bedroom, and
country scenes. Following the common experimental settings,
we use the extracted features provided by [36], and the
dimension is reduced to 3000. D-KSVD [50], LC-KSVD [36],
FDDL [51], TDDL [49], BMDDL [53], and SRC [8] all use
the PCA-transformed features. We randomly select 100 images
per category for training and use the remaining samples for
testing. The dictionary size is set as 450.

The comparison results are reported in Table V. Our method
outperforms all the competing dictionary learning methods and
other state-of-the-art methods, and it improves on BMDDL by
around 1.3%.
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Fig. 9. The top and bottom rows show the classes in which our method performed the best and the worst.

Fig. 10. Recognition rates (%) using different dictionary sizes. (a) UCF50. (b) Caltech 101. (c) 15 Scene Categories.

TABLE V

RECOGNITION RATE (%) ON THE 15 SCENE CATEGORIES DATABASE

F. Parameter Analysis

In this subsection, we take the AR database as an example
and conduct experiments to evaluate the effect of our method
compared with different sparsity regularization parameters λ.
The parameter λ contains two parts: λtrain and λtest . When
evaluating one parameter, the other is fixed to the values
used in the AR recognition experiment. Fig. 11 shows the
performance of ODP-SRC versus different λs. We can see that
our proposed ODP-SRC achieves a stable performance when
λ is set as a suitable range.

We also conduct experiments on the UCF50, Caltech 101,
and 15 scene categories databases to evaluate the performance
of our method with different dictionary sizes. The experimen-
tal results are summarized in Fig. 10. We can see that with
different dictionary sizes, our method consistently outperforms
the other six competing methods on all three databases. These
results clearly demonstrate that OPD-SRC-DL is able to learn
a more discriminative dictionary. This indicates that consider-
ing the relationship between the sparse representation and the

Fig. 11. Recognition rates (%) of ODP-SRC versus different values of λ for
the AR database.

desired dictionary is crucial for improving the performance
of SRC.

G. Comparison of Computation Time

In this subsection, we compare the computing time of
our method with that of D-KSVD [30], LC-KSVD [36],
TDDL [49], BMDDL [53], and SRC [8] for the Extended
Yale B and 15 Scene Categories databases. Our hardware
configuration is a 3.30 GHz CPU and 8GB of RAM. It should
be pointed out that the experimental settings in this subsection
are as described in the above subsections. Table VI reports the

Authorized licensed use limited to: Nanjing University of Information Science and Technology. Downloaded on June 21,2020 at 09:43:26 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: OPTIMAL DISCRIMINATIVE PROJECTION FOR SRC VIA BILEVEL OPTIMIZATION 1075

TABLE VI

RECOGNITION RATE (%) ON THE 15 SCENE CATEGORIES DATABASE

computing times of the different methods. Note that SRC has
no training time, only testing time, and the reported testing
time only refers to the time for classifying one sample.

From Table VI, we can see that the proposed method is time-
consuming in its training stage (primarily the computing time
for learning a projection matrix and a dictionary). However,
as for classifying a testing sample, the computing time of
ODP-SRC-DL is comparable to other state-of-the-art methods.
The testing time of our method is four times faster than SRC.
The main reason is that SRC uses all training samples as the
dictionary, while ODP-SRC-DL uses the learned dictionary D
to calculate the spares representation coefficient vector α.
Since the number of dictionary atoms is less than the number
of training samples, the testing time of our method is faster
than SRC. Note that the proposed algorithm ODP-SRC-DL
consists of two parts: offline and online computation. The pro-
jection and dictionary can be learned offline, and classification
is performed online. Thus, the training time does not affect the
practical application of our method.

V. CONCLUSION

In this paper, we proposed a bilevel optimization model
based discriminative projection learning method (ODP-SRC).
By learning a discriminative projection matrix, the extracted
features in the transformed space can characterize the discrim-
inant structure of data well and simultaneously fit SRC. The
most important point is that by using the bilevel optimization
model, the relationship between sparse representation and the
desired projection can be expressed explicitly in the objective
function. Thus, SRC can achieve optimum performance in
a reduced low-dimensional space. Furthermore, our method
can be easily extended to learn a dictionary jointly with the
projection matrix. This will further improve the classification
performance of SRC. Experimental results for many bench-
mark databases also verify these conclusions.
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