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Multi-Kernel Coupled Projections for Domain
Adaptive Dictionary Learning

Yuhui Zheng , Xilong Wang, Guoqing Zhang , Baihua Xiao , Fu Xiao , Member, IEEE, and Jianwei Zhang

Abstract—Dictionary learning has produced state-of-the-art
results in various classification tasks. However, if the training data
have a different distribution than the testing data, the learned
sparse representation might not be optimal. Recently, several
domain-adaptive dictionary learning (DADL) methods and kernels
have been proposed and have achieved impressive performance.
However, the performance of these single kernel-based methods
heavily depends heavily on the choice of the kernel, and the
question of how to combine multiple kernel learning (MKL) with
the DADL framework has not been well studied. Motivated by
these concerns, in this paper, we propose a multi-kernel domain-
adaptive sparse representation-based classification (MK-DASRC)
and then use it as a criterion to design a multi-kernel sparse
representation-based domain-adaptive discriminative projection
method, in which the discriminative features of the data in the
two domains are simultaneously learned with the dictionary.
The purpose of this method is to maximize the between-class
sparse reconstruction residuals of data from both domains, and
minimize the within-class sparse reconstruction residuals of data in
the low-dimensional subspace. Thus, the resulting representations
can satisfactorily fit MK-DASRC and simultaneously display
discriminability. Extensive experimental results on a series of
benchmark databases show that our method performs better than
the state-of-the-art methods.

Index Terms—Dictionary learning, multiple kernel learning,
discriminative projections, domain adaptation.
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Fig. 1. Selected images from the back-pack category; Amazon (left two
columns), DLSR (right two columns).

I. INTRODUCTION

W ITH the rapid development of computer and internet
technology, large amounts of media data are generated

every day from social media sites such as Google, Baidu, Weibo,
Facebook, etc. These multimedia data increase greatly in cross-
domain scenes, i.e., different websites produce media data in
different domains. Fig. 1 illustrates selected samples of a back-
pack from two different domains. Although these samples have
same object class label, they are visually dissimilar. If we use
source domain images as the training data to learn a classifier,
and subsequently test the target images, no matter how specific
the cause is, any change in distribution after classifier learning
will degrade its performance at test time. Domain adaptation
(DA) attempts to tackle the problem in which the source do-
main data used to learn a model have a distribution different
from that of the data on which the model is applied [1]–[11].
This problem is often encountered in practical applications. In
addition, collection of sufficient labeled target images is expen-
sive and time-consuming. If we use limited labeled target data
to train the classifiers, the learned classifiers are not usually
robust for vision recognition tasks. DA is able to learn robust
classifiers with only a few labeled samples from the target do-
main by exploiting many labeled samples from other source
domains [12]–[16], [56].

Different types of domain-adaptive methods have been de-
veloped in recent years [17]–[25], and sparse representation
and dictionary-based methods have achieved highly competi-
tive performance [26]–[32] because of the robust discriminant
representation that they supply by adapting to a particular data
sample. Shekhar et al. [29], [30] proposed a generalized DADL
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approach to jointly learn the projections of data in the source
and target domains. To further improve discrimination, based
on the classification criteria of sparse representation-based
classification (SRC), Zhang et al. [32] presented an optimal
couple of projections for a domain-adaptive SRC method such
that SRC can achieve better performance in DA recognition
problem.

Recently, deep neural networks have had excellent success
in cross-domain recognition tasks and achieved observable im-
provement [13], [33]–[36], partly because deep networks can
learn highly powerful hierarchical nonlinear representations of
the inputs [37]–[39], [59]–[65], making them suitable for do-
main adaptation. Bousmalis et al. [38] presented an unsuper-
vised domain adaptation method that learns a transformation in
the pixel space using generative adversarial networks. Herath
et al. [39] addressed both unsupervised and semi-supervised
domain adaptation problems. Although deep neural networks
have exhibited promising performance, certain limitations re-
main (e.g., requirements of a large amount of additional train-
ing samples, the collection of which is difficult, and super-
computational machines). As a result, in this paper, we focus
only on the situation in which a large number of additional
training samples is not used.

In many real-world applications, samples usually lie in a non-
linear feature space, and kernel technology is an effective way
to tackle nonlinear data structures [40]–[42]. Instead of directly
using a fixed kernel, multiple kernel learning (MKL) [43]–[45]
has been widely applied to learn an optimal kernel, which is
a linear combination of multiple predetermined kernel func-
tions. Recently, several multi-kernel sparse representation or
dictionary learning approaches have been proposed [46]–[48].
Nevertheless, these methods usually assume that the test data
and training data originate from the same domain. Thus, MKL
algorithms are invalid for obtaining the optimal kernel with a
combination of data for the DA problem. Therefore, the per-
formance of MKL algorithms trained in the source domain are
degraded in the target domain [49], [50].

Based on the above motivations, we present a multi-
kernel domain-adaptive sparse representation-based classifica-
tion method (MK-DASRC), and then based on the decision
criteria of the MK-DASRC, we propose a multi-kernel domain-
adaptive based discriminative projection method (MK-DADP),
which jointly learns the transformation of data in different do-
mains, and a discriminative dictionary in a common space.
The proposed method aims to learn the coupled projections
and a common dictionary such that in the transformed low-
dimensional space, the within-class sparse reconstruction resid-
uals of data are minimized and the between-class sparse recon-
struction residuals are maximized. This approach encourages
the sparse codes to be discriminative across classes. As a result,
MK-DASRC is able to obtain better recognition accuracy in
the projected space. Moreover, the proposed method is easily
extensible for addressing multiple domains.

The remainder of the paper is organized as follows.
Section II presents our multiple kernel domain-adaptive sparse
representation-based classification algorithm. The proposed
multiple kernel discriminative projection method is described

in Section III, and the optimization algorithm is described in
Section IV. Experimental results are reviewed in Section V, and
Section VI summarizes our conclusions.

II. MULTI-KERNEL DOMAIN ADAPTIVE SPARSE

REPRESENTATION-BASED CLASSIFICATION

To achieve better results in object recognition tasks, com-
bining multiple feature representations is important. The search
for better feature combinations requires proper design of kernel
functions among a set of candidate kernels. MKL aims to deter-
mine the mixing weights of multiple kernels [46], [51], assum-
ing that {κm}M

m=1 represents a group of base kernel functions
({Km}M

m=1 are the kernel matrices), where M is the num-
ber of base kernels. The weighted kernel can be computed as
follows

κβ =
M∑

m=1

βm κm ,Kβ =
M∑

m=1

βmKm , (1)

where β ≥ 0 is the kernel weight. MKL aims to learn the optimal
kernel weights βm .

Let Y1 = [y1
1 ,y1

2 , . . . ,y1
N1

] ∈ Rm 1 ×N1 and Y2 =
[y2

1 ,y2
2 , . . . ,y2

N2
] ∈ Rm 2 ×N2 denote the source and tar-

get domain data, respectively. In practice, samples usually lie
in nonlinear feature space, and thus, the linear classifier is not
able to satisfactorily characterize the corresponding feature
space. The kernel method is an effective approach to address
this problem. In this work, φ is a nonlinear mapping associated
with the kernel function κ(yi ,yj ) = φ(yi)T φ(yi). Therefore
Y1 and Y2 in space F can be separately expressed as φ(Y1)
and φ(Y2). For a testing sample yte , from domain i, i = 1, 2,
the sparse representation in the space F can be expressed as
shown

arg min
α

= ‖φ(yte) − D̃α‖2
2 + λ‖α‖1 , (2)

where ‖ · ‖1 is the �1-norm, D̃ ∈ Rm̃×K denotes the dictionary
in feature space F , K is the number of atoms in the dictionary,
and α = [α1 , α2 , . . . , αK ]T is the representation vector associ-
ated with sample φ(yte). Since the dimension of feature space
F is quite high or possibly infinite, dimensionality reduction is
necessary in F . As such, Pi ∈ Rm̃×d denotes as the projection,
which is no longer linear from space F to the reduced space,
where d is the dimension of the projection space. Eq. (2) can be
rewritten as follows:

arg min
α

= ‖PT
i φ(yte) − Dα‖2

2 + λ‖α‖1 , (3)

where D = PT D̃ = [D1 ,D2 , . . . ,Dc ] is the learned dictionary
in the common space, P = [P1 ;P2 ], c is the total number of
classes, and K =

∑c
i=1 Ki , where Ki is the dictionary atoms in

each sub-dictionary i. Because any element in F lies in the span
of the transformed training samples, we can represent the pro-
jection as Pi = φ(Yi)Ai , where Ai ∈ Rni ×d is the coefficient
matrix for Pi . Thus, we obtain the following:

PT
i φ(yte) = AT

i φ(Yi)T φ(yte) = AT
i K(y)

i β (4)
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where

K(y)
i =

⎡

⎢⎣
K1(yi

1 ,y) · · · KM (yi
1 ,y)

...
. . .

...
K1(yi

Ni
,y) · · · KM (yi

Ni
,y)

⎤

⎥⎦ ∈ RNi ×M ,

and Km (i, j) = κm (yi ,yj ).

(5)

We can represent the projection P as P = φ(Y)A, where
φ(Y) = [φ(Y1 ) 0

0 φ(Y2 ) ], and A = [A1 ;A2 ]. Dictionary D̃ can be

computed as D̃ = φ(Y)B, where B ∈ R
∑

Ni ×K . Thus Eq. (3)
can be written as follows

arg min
α

‖AT
i K(y)

i β − AT KβBα‖2
2 + λ‖α‖1 , (6)

whereKβ = φ(Y)T φ(Y) =
∑M

m=1 βmKm is the kernel Gram
matrix, and AT = [AT

1 ,AT
2 ]. Once we obtain the coefficient

vector α, the reconstruction residual can be computed as shown

ei = ‖AT
i K(y)

i β − AT KβBδi(α)‖2
2 , (7)

where δi(·) is a characteristic function that chooses the co-
efficients with respect to class i, i = 1, 2, . . . , c. We use
identity(yte) = arg mini{ei} to determine the label of yte .

III. MULTI-KERNEL DOMAIN ADAPTIVE DISCRIMINATIVE

PROJECTIONS

A. Proposed Framework

A multi-kernel domain-adaptive based discriminative projec-
tions method (MK-DADP) is proposed in this section. Based
on the classification criteria of our proposed MK-DASRC, we
learn the coupled projections of data from both domains and
simultaneously learn a latent dictionary. Furthermore, we note
that MK-DADP and MK-DASRC depend on each other, and
the sparse coefficient vectors required in MK-DADP must be
computed by MK-DASRC. The projections, kernel weights and
structured dictionary required in MK-DASRC must be com-
puted by MK-DADP. We use an alternative iterative algorithm
to optimize the proposed method.

In the source domain, given a training sample φ(y1
i,j ), where

y1
i,j represents the j-th sample of class i, we compute its

sparse representation vector α1
i,j , and then define the source

domain within-class sparse reconstruction residual in the pro-
jected space J1

w as follows:

J1
w = tr

⎛

⎝
c∑

i=1

n1
i∑

j=1

(PT
1 φ(y1

i,j ) − Dδi(α1
i,j ))

× (
PT

1 φ(y1
i,j ) − Dδi(α1

i,j )
)T

)

= tr
(
(PT

1 φ(Y1) − DΛ1
w )(PT

1 φ(Y1) − DΛ1
w )T

)

= ‖PT
1 φ(Y1) − DΛ1

w‖2
F , (8)

where Λ1
w = [δ1(α1

1,1), δ1(α1
1,2), . . . , δc(α1

c,n1
i
)] ∈ RK×N1 ,

n1
i is the training samples in class i, and N1 =

∑c
i=1 n1

i .
δi(α1

i,j ) is a vector whose only nonzero coefficients are the
entries in α1

i,j corresponding to the i-th class.

The source domain between-class sparse reconstruction resid-
ual J1

b can be defined as follows:

J1
b = tr

⎛

⎝
c∑

i=1

n1
i∑

j=1

∑

s �=i

(PT
1 φ(y1

i,j ) − Dδs(α1
i,j ))

× (
PT

1 φ(y1
i,j ) − Dδs(α1

i,j )
)T

⎞

⎠

= ‖PT
1 φ(Y1) − DΛ1

b ‖2
F , (9)

where Λ1
b = [δs(α1

1,1), δs(α1
1,2), . . . , δs(α1

c,n1
i
)] ∈ RK×N1 ,

δs(α1
i,j ) is a vector whose only nonzero coefficients are the

entries in α1
i,j corresponding to the s-th class, and s �= i.

In the target domain, we define the within-class and between-
class residuals in the reduced space as shown

J2
w = tr

⎛

⎝
c∑

i=1

n2
i∑

j=1

(PT
2 φ(y2

i,j ) − Dδi(α2
i,j ))

× (PT
2 φ(y2

i,j ) − Dδi(α2
i,j ))

T

⎞

⎠

= ‖PT
2 φ(Y2) − DΛ2

w‖2
F , (10)

and

J2
b = tr

⎛

⎝
c∑

i=1

n2
i∑

j=1

∑

s �=i

(PT
2 φ(y2

i,j ) − Dδs(α2
i,j ))

×(PT
2 φ(y2

i,j ) − Dδs(α2
i,j ))

T
)

= ‖PT
2 φ(Y2) − DΛ2

b ‖2
F , (11)

where Λ2
w = [δ1(α2

1,1), δ1(α2
1,2), . . . , δc(α2

c,n2
i
)] ∈ RK×N2

and Λ2
b = [δs(α2

1,1), δs(α2
1,2), . . . , δs(α2

c,n2
i
)] ∈ RK×N2 , n2

i

is the training samples in the i-th class, and N2 =
∑c

i=1 n2
i .

We expect to simultaneously maximize J1
b and J2

b from both
domains in the reduced space.

max Jb = max{J1
b + J2

b }
= max{‖PT

1 φ(Y1) − DΛ1
b ‖2

F

+ ‖PT
2 φ(Y2) − DΛ2

b ‖2
F }

= max ‖PT φ(Y) − DΛb‖2
F

= max ‖AT Kβ − AT KβBΛb‖2
F , (12)

and simultaneously minimize the J1
w and J2

w residuals

min Jw = min{J1
w + J2

w}
= max ‖AT Kβ − AT KβBΛw‖2

F ,
(13)
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where Λb = [Λ1
b ,Λ2

b ] and Λw = [Λ1
w ,Λ2

w ]. We can learn A
and B by maximizing the following objective function

J(A,B) =

max
A ,B

tr((AT Kβ−AT KβBΛb)(AT Kβ − AT KβBΛb)T )
tr((AT Kβ−AT KβBΛw )(AT Kβ − AT KβBΛw )T )

= max
A ,B

tr(AT KβSbKT
βA)

tr(AT KβSwKT
βA)

s.t. AT
i KiAi = I,∀i = 1, 2,

M∑

i=1

βm = 1, βm ≥ 0. (14)

where Ki = φ(Yi)T φ(Yi), Sb = (I − BΛb)(I − BΛb)T is
the between-class scatter matrix and Sw = (I − BΛw )(I −
BΛw )T is the within-class scatter matrix. In this work, we
require that P1 and P2 are orthogonal. Thus, the equality con-
straint becomes PT

i Pi = AT
i KiAi = I.

B. Multiple Domains

For the multiple domain problem, we construct matrices P,
φ(Y), Λb , Λw as PT = [PT

1 , . . . ,PT
M ],

φ(Y) =

⎡

⎢⎣
φ(Y1) · · · 0

...
. . .

...
0 · · · φ(YM )

⎤

⎥⎦,

Λb = [Λ1
b , . . . ,ΛM

b ], and Λw = [Λ1
w , . . . ,ΛM

w ].
Using the above definitions, we extend Eq. (14) to multiple

domains as follows

J(A,B) = max
A ,B

tr(AT KβSbKT
βA)

tr(AT KβSwKT
βA)

s.t. AT
i KiAi = I,∀i = 1, . . . ,M,

M∑

i=1

βm = 1, βm ≥ 0.

(15)

IV. OPTIMIZATION

The objective function in Eq. (15) is generally non-convex
with respect to A, B and β. We develop an iterative algorithm
to optimize the variables alternatively.

Step 1: Learn A, β with fixed B. For a fixed B, using the trace
ratio optimization method, we can solve the objective function.

To avoiding overfitting, we should ensure that KβSwKT
β +

μI is of full rank. Thus, in the denominator, we add regulariza-
tion term μI.

We know that for certain A∗ and β∗, there is a maximum
ρ∗ that can reach them. Thus, for any A and β, we have the
following

tr(AT KβSbKT
βA)

tr
(
AT (KβSwKT

β + μI)A
) ≤ ρ∗, (16)

and hence,

tr
(
AT KβSbKT

βA
) − ρ∗tr

(
AT (KβSwKT

β + μI)A
) ≤ 0.

(17)
To optimize the objective function, we define a function

f(ρ) = max
A

G(A, ρ)

= max
A

tr
(
AT (KβSbKT

β − ρ∗KβSwKT
β − ρμI)A

)

= max
A

tr
(
AT (Kβ(Sb − ρSw )KT

β − ρμI)A
)
. (18)

In this work, f(ρ) has the following properties, which are proved
in [32].

(i). f(ρ) is a decreasing function. (ii). f(ρ) = 0 iff ρ = ρ∗.
Following [32], we known that ρ∗ always exists and projection

A, weight β and the root of the f(ρ) can be found by updating
them alternately. Giving a ρ, we denote β(ρ) and A(ρ) as the
solution of Eq. (18). Thus

f ′(ρ) = −tr
(
A(ρ)T (Kβ (ρ)SwKT

β (ρ) + μI)A(ρ)
)

(19)

where Kβ (ρ) =
∑M

m=1 βm (ρ)Km . With β(ρ) and A(ρ), the

root can be found by ρnew = ρ − η1
f (ρ)
f ′(ρ) , where η1 is the step

length. In the following, we will introduce how to find β(ρ) and
A(ρ) for a given ρ.

Using constraint AT
i KiAi = I, A can be solved by the fol-

lowing

max
A

tr
(
AT (Kβ(Sb − ρSw )KT

β − ρμI)A
)
.

s.t. AT
i KiAi = I,∀i = 1, . . . , M,

M∑

i=1

βm = 1, βm ≥ 0.

(20)

Because it is difficult to direct the optimization, i.e., Eq. (20),
thus, we use a two-step, iterative strategy to optimize A and β.

Updating: A: If β is fixed, Eq. (20) can be expressed as
shown

max
G

tr(GT HG)

s.t. GT
i Gi = I,∀i = 1, 2, . . . ,M, (21)

where H = Λ− 1
2 VT (Kβ (Sb − ρSw )KT

β − ρμI)VΛ− 1
2 .

Proof: Let G = Λ− 1
2 VT A, where V and Λ denote as the

eigen decomposition of K = VΛVT . Substituting H and G
into Eq.(21), we can obtain the optimization problem in Eq.(20).

Similar to [30] and [32], Eq. (21) can be solved efficiently
using the algorithm presented by [52].

Updating: β: Fix A, and solve the following optimization
problem to find β

max
β

tr
(
AT (KβSbKT

β − ρKβSwKT
β − ρμI)A

)

s.t.
M∑

m=1

βm = 1, βm ≥ 0. (22)

Eq. (22) is a non-convex problem, and we define the following

h(β) = tr
(
AT (KβSbKT

β − ρKβSwKT
β − ρμI)A

)
(23)
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and we obtain

∂h

∂βm
= tr

(
AT (Km (Sb − Sw )Kβ + Kβ(Sb − Sw )KmA

)

(24)
To find β, we update the projection of β in the direction of
∂h

∂βm
. As mentioned in [45], to satisfy the constraint on β, the

projection z of β on the hyperplane βT 1 = 1 is defined as
shown

π(β) = arg min
zT 1=1,z≥0

‖z − β‖2
2 (25)

which is a quadratic programming (QP) problem. In every iter-
ation, we move β on the hyperplane and obtain a local solution
for β and A. Algorithm 2 describes the steps for finding A
and β .

Step 2: Learn B with fixed A and β. For fixed A, β, Eq. (15)
can be written as follows:

J(B) = max
B

tr(AT KβSbKT
βA)

tr(AT KβSwKT
βA)

. (26)

To learn the dictionary, the sub-dictionaries Di and Ds ,
s �= i, can be represented as Di = PT φ(Y)Bi and Ds =
PT φ(Y)Bs , respectively, where B = [B1 ,B2 , . . . ,Bc ]. Our
objective function in Eq. (26) can be rewritten as follows:

J(Bi) = max
B i

c∑

i=1

tr(AT Si
bA)

tr(AT SwA)
, (27)

where Si
b =

∑
s �=i(K

i
β − KβBsΛs

b )(K
i
β − KβBsΛs

b )
T , Sw

=
∑c

i=1 Si
w =

∑c
i=1(K

i
β − KβBiΛi

b)(K
i
β − KβBiΛi

b)
T

and Ki
β = φ(Y)T φ(Yi). Additionally, Λs

b = [Λ1,s
b ,Λ2,s

b

· · · ,ΛM ,s
b ] and Λi

w = [Λ1,i
w ,Λ2,i

w , . . . ,ΛM ,i
w ] represent

coefficient matrices associated with class s and i, s �= i,
respectively. Eq. (26) and Eq. (27) are the same, and for ease
of optimization, we formulate them in a different manner. (See
Appendix A).

In this work, Λ1,s
b = [α1,s

1,1 ,α1,s
1,2 , . . . ,α1,s

c,n1
c
], where α1,s

i,j is
the sparse coding with respect to class s, s �= i from domain
1, i = 1, . . . , c, j = 1, . . . , n1

i . Λ1,i
w = [α1,i

1,1 ,α
1,i
1,2 , . . . ,α

1,i
c,n1

c
],

where α1,i
i,j is the sparse coding vector with respect to class i.

We update B in a class-by-class manner. When updating Bi ,
Bs , s �= i with respect to the other class is fixed. We exploit
the gradient ascent for optimization. Using the chain rule, we
obtain the following

�B i
J(Bi) =

∂J(Bi)
∂Si

b

∂Si
b

∂Bi
+

∂J(Bi)
∂Sw

∂Sw

∂Bi
. (28)

Because there is no relationship between Si
b and Bi ,

∂Si
b/∂Bi = 0, it is easy to observe the following

∂J(Bi)
∂Sw

=
−tr(AT Si

bA)AT A

(tr(AT SwA))2 , (29)

∂Sw

∂Bi
= 2Kβ(Λi

w )T (KβBiΛi
w − Ki

β). (30)

Fig. 2. Example images from laptop and printer categories in the domain
adaptation dataset.

When the gradient in Eq. (28) is calculated, the sub-dictionary
Bi can be updated using a projected gradient ascent procedure

Bi = Bi + η2�B i
J(Bi). (31)

where η2 is the step length.
When we obtain A and B, we calculate the coding vector for

each input sample from both domains. Algorithm 1 summaries
the detailed steps of the proposed method.

V. EXPERIMENTS

We use a domain adaptation dataset that consists of the Of-
fice [7] and Caltech-256 [55] datasets to verify the performance
of MK-DADP for object recognition. The Office dataset in-
cludes 3 domains: Amazon, DSLR and Webcam. Every domain
contains 31 categories. The Caltech 256 is the fourth domain,
which contains 30,607 images of 256 categories, and each cate-
gory has at least 80 images. Selected images from these domains
are shown in Fig. 2, and obviously highlighting the differences
between them.

To demonstrate the superiority of MK-DADP, we compare
our approach with certain state-of-the-art domain adaptive algo-
rithms, including SGF [6], GFK [17], DASRC [28], SDDL [30],
OCPD-SRC [32], CDADL [57], DsGsDL [58], and another
non-domain adaptation multi-kernel learning method MK-SR-
ODP [45]. In addition, we also compare the results of MK-
DADP with those of DASH-N [24]. To make a fair comparison,
similar to DASH-N, we adopt two-layer networks to learn the
feature representation and subsequently perform the recogni-
tion using the concatenated features. The experimental setup
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Algorithm 1: MK-DADP
Input: Training set Yi and corresponding class label ci ,

i = 1,2.
Kernel matrix K, parameters λ, η1 , η2 , μ, dimension d
and dictionary atoms K.

Initialize: Calculate SVD of kernel matrix Ki = ViSiVT
i ,

then set
Ai as the matrix of eigenvectors corresponding to the
largest d
eigenvalues such that AT

i KiAi = I. Randomly initialize
B such that
AT KβB and AT

i K(y)
i β have unit �2-norm.

Optimization
Repeat

Solve A and β with fixed B via Algorithm 2.
Solve B with fixed A and β via Eq.(31);

Until convergence
Output: dictionary D, and projections {A}2

i=1 .

Algorithm 2: Alternating Projection
Input: Sb , Sw , step length η1 , iterative number t1 , t2 .

Initialize ρ,
β = 1/M .

Repeat
Repeat

Compute A by solving Eq. (21).
Compute β by solving Eq. (22).

Until t2 reached.
Computeρ = ρ − η1

f (ρ)
f ′(ρ) .

Until f(ρ)=0 or t1 reached.
Output: Ã, β

is followed as in [24], denoted as MK-DADP (hierarchical).
Finally, we compare our method with selected deep learning-
based domain adaptation learning methods [59]–[62]. The av-
erage recognition rate is used to measure the performances of
different methods.

A. Experimental Settings

As described in [32], we use three step-ups to evaluate the
proposed method. In the first setup, 10 common classes from
four domains are used, i.e., calculator, backpack, touring bike,
video projector, coffee mug, computer mouse, and headphones.
In each domain, the number of samples per category ranges
from 8 to 151 for a total of 2533 images. In the second setup,
we evaluate various approaches by using all 31 classes from
Amazon, Webcam, and DSLR. Finally, we test the method for
adaptation using multiple domains. For both cases, we select
20 samples per category for training from Amazon or Cal-
tech, and each category selects 8 samples for training from
DSLR and Webcam when used as the source. Three samples
are selected for training when all of them are used in the

target domain, and the remaining samples are used in test-
ing. Each experiment is repeated 20 times for random train/test
splits.

We have four parameters λ, η1 , η2 and μ in our proposed
MK-DADP method. In all experiments, these tuning parame-
ters are determined by five-fold cross-validation on the train-
ing data. The parameters that yielded the best classification
result are selected for the testing data. Since four parame-
ters must be tuned and it is generally difficult to determine
them simultaneously, we apply a stepwise selection strategy.
Specifically, we first prefix the other parameters, seek the op-
timal value for one parameter and subsequently update these
parameters with the newly learned parameters. The parame-
ters are determined when the recognition performance reaches
a stable rate. Concretely, we use λ = 0.001 for training and
λ = 0.001 for testing to obtain satisfactory performance. Ad-
ditionally, η1 is the step length for updating ρ, and η2 is the
step size for updating the sub-dictionary Bi . Parameters η1 and
η2 are set to 1 and 0.1, respectively, which work well in all
experiments. We specify parameter μ as 0.001. For other com-
pared approaches, we exploit their original settings supplied in
the corresponding papers. The base kernels are predetermined
as a Gaussian kernel [i.e., κ(yi ,yj ) = exp(−‖yi − yj‖/γ)]
with six degrees (10−4 , 10−3 , 10−2 , 10−1 , 1, 10), inverse
square distance kernel [i.e.,κ(yi ,yj ) = 1/(γ‖yi − yj‖2 + 1)],
and inverse distance kernel [i.e., 1/(

√
γ‖yi − yj‖ + 1)] with

four degrees (2−1 , 2−2 , 2−3 , 2−4). Finally, the pre-computed
800-bin SURF features supplied in [5], [7] are used in all of
datasets.

B. Single Source

In this section, we set the dictionary atoms to 50, i.e., each
class contains 5 atoms, and MK-SR-ODP and DASRC use all
of the training samples as the dictionary. The dimension of the
reduced space is set to 65. Table I tabulates the classification
results of different methods on 8 pairs of source-target domains.
The proposed MK-DADP obtains the highest recognition accu-
racies in most of the domain pairs. MK-DADP significantly out-
performs OCPD-SRC [32] in all pairs of source-target domains.
This result indicate that a combined kernel yields better perfor-
mance than a predetermined one, and multiple kernel learning
is more effective in the domain adaptation problem. We also
observe that MK-SR-ODP achieves poorer performance than
our method, and this result indicates that MKL is inefficient
when the training data and test data are drawn from different
domains. In addition, from Table I, we note that our proposed
MK-DADP outperforms CDADL [57] (a common dictionary
combined with a set of domain-specific dictionaries) and Ds-
GsDL [58] in 6 out of 8 pairs of source-target domains. For
pairs such as Amazon-Webcam, Webcam-Amazon, or DSLR-
Amazon, we achieve more than 8% improvement over CDADL.
Three reasons can explain this phenomenon. First, MK-DADP
is a semi-supervised domain adaptation method in which the
source domain contains sufficient labeled data, and the target do-
main contains a small amount of labeled data. However, CDADL
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TABLE I
RECOGNITION RATES (%) ON A SINGLE DOMAIN

and DsGsDL are unsupervised domain adaptation methods in
which the target domain is completely unlabeled. Thus, selected
discriminant information in the target domain is not fully ex-
ploited. Second, CDADL and DsGsDL optimize the combina-
tions of common reconstruction errors or domain-specific re-
construction errors. Thus, the learned dictionaries might not be
optimal for the final recognition task. Although our proposed
MK-DADP is designed based on the proposed multi-kernel do-
main adaptive sparse representation-based classification (MK-
DASRC), i.e., our model achieves an overall optimality for
recognition in that the learned projections and dictionary are
directly tailored for recognition. In addition, the problems for
computing the sparse codes in the training and testing phases
can be the same. Therefore, the resulting representations can
satisfactorily fit MK-DASRC and simultaneously have discrim-
inability. Finally, CDADL and DsGsDL are linear methods,
which means that the classifier learned in a linear manner cannot
satisfactorily characterize the corresponding feature space. Our
method learns a classifier by using the multiple kernel learning
technique in which the optimal kernel is learned by explicitly
minimizing the within-class sparse reconstruction residuals of
data from both domains and maximizing the between-class re-
construction residuals of data in the low-dimensional subspace.
Hence, the learned dictionary can characterize the non-linear
data.

As the high-level features contain more useful informa-
tion than low-level ones, similar to DASH-N [24], MK-DADP
also uses the idea of hierarchical networks to learn the fea-
ture representation and uses the concatenated features to per-
form classification. Using only two-layer networks, MK-DADP
(hierarchical) significantly outperforms DASH-N and obtains
the best results. In each layer of DASH-N, SDDL is used
to learn the transformations and dictionary. Our method uses
MK-DADP to learn the projections and dictionary in each
layer, and thus MK-DADP (hierarchical) performs better than
DASH-N.

We also investigate the classification results of different meth-
ods on all 31 classes. The results are listed in Table II. MK-
DADP obtains the best performances on 2 domain pairs except
for the results obtained for the Webcam-DLSR pair by Ds-
GsDL [58]. As expected, MK-DADP outperforms OCPD-SRC

TABLE II
SINGLE SOURCE RECOGNITION RATES (%) ON ALL 31 CLASSES

TABLE III
RECOGNITION RATES (%) ON MULTIPLE DOMAINS

and CDADL [57] for all pairs. In addition, MK-DADP (hierar-
chical) is superior to DASH-N and obtains the best performance
in all domain pairs. This result indicates that the use of hierar-
chical structure is meaningful for transferring knowledge from
the source domain to the target domain.

C. Multiple Sources

We extend our method to handle the multiple domain
classification problem, and in this experiment, only the Office
dataset is used. The dictionary atoms are set to 186 (i.e., each
class contains 6 atoms), and the dimension of the feature
space after projection is set to 90. Table III lists the results.
We observe that MK-DADP obtains the best recognition
performance. This result proves that MKL can address the
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Fig. 3. Recognition rate of MK-DADP versus different values of λ.

cross-domain problem with combined data from multiple
domains. Similarly, MK-SR-ODP performs poorly when the
training data have a different distribution than the test data.
Using multi-layer networks, MK-DADP (hierarchical) obtains
the highest recognition rate and always outperforms DASH-N
in all domain pairs.

D. Parameter Settings

In this section, we evaluate the performance of our method
by tuning different parameters. We first estimate the influ-
ence of different sparsity regularization parameters λtrain and
λtest on the proposed method (MK-DADP). We use the Ama-
zon/Webcam domain pair to conduct experiments and evaluate
one parameter, while the other is fixed. Fig. 3 illustrates the
performance of MK-DADP versus different λ. We note that
MK-DADP is able to achieve stable performance when it is set
as a suitable range.

We change the number of source images to estimate the
performance of MK-DADP. Fig. 4 shows the results of MK-
DADP versus different number of source images. As the num-
ber of source images increases, the MK-DADP’s performance
increases slightly. This indicates that we can increase the accu-
racy of our method by selecting additional source images. Fig. 5
illustrates the recognition rates of MK-DADP versus differ-
ent dimensions under the Amazon/Webcam and Caltech/DLSR
source-target pairs. We can observe that MK-DADP can obtain
better performance when d is in the range of [40 70]. Similar
results can also be obtained in the other domain pairs.

We also investigate the MK-DADP’s performance versus dif-
ferent dictionary sizes (Ki , i.e., the number of atoms for each
class). To observe the effect of different Ki , we perform exper-
iments by varying Ki in the range of [1 8] with step 1 under
the Amazon/Webcam and Caltech/DLSR source-target pairs.
Fig. 6 illustrates the results for MK-DADP versus different val-
ues of Ki , and we can observe that our methods maintains bet-
ter performance when the dictionary size reaches 4 or 5. With

Fig. 4. Recognition rate of MK-DADP versus different number of source
images.

Fig. 5. Recognition rate of MK-DADP under different feature dimensions.

Fig. 6. Recognition rate of MK-DADP versus different Ki .
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Fig. 7. Recognition rate of MK-DADP versus different number of iterations
on the Amazon/Webcam source-target pair.

TABLE IV
COMPUTATION TIME (SECONDS) FOR TRAINING AND TESTING

additional dictionary atoms, the performance of MK-DADP
varies in a small range.

Finally, we investigate the performance of our MK-DADP
versus different number of iterations. Fig. 7 shows the recogni-
tion rate of our MK-DADP over different number of iterations
on the Amazon/Webcam source-target pair. We observe that our
proposed MK-DADP can achieve stable performance in several
iterations.

E. Running Time

In this section, we compare the running time of MK-DADP
with those of OCPD-SRC [32], SDDL [30] and DASRC [28].
We conduct this experiment using single-source domain adapta-
tion. The parameters are set the same as in the previous experi-
ment. Our hardware configuration includes a 3.30 GHz CPU and
an 8GB RAM. Table IV lists the computation times of different
methods on the Amazon/Webcam domain pair. The reported
testing time refers to the time needed to recognize one im-
age. We note that our method requires more training time than
OCPD-SRC, DASRC and SDDL. However, the testing time
for MK-DADP is comparable to that of other domain adapta-
tion methods. Note that the projections and dictionary can be
learned offline and that classification can be performed online.
Therefore, this option does not affect our method for practical
application.

Fig. 8. Example images from the keyboard class in halftone and edge domains.

F. Deep Features

In this section, we compare the proposed MK-DADP with
four state-of-the-art deep learning-based domain adaptation
methods, such as DDC [60], DANN [61], DAN [62], DeCAF6
S+T [59], and CDADL+DeCAF6 [57], on the Office dataset.
For fair comparison, we evaluate our method using the deep
features (DeCAF6) supplied by [59] and use the standard exper-
imental protocol from [7]. The results for 6 pairs of source-
target domains are reported in Table V. We note that the
deep feature representation indeed improves the performance
of our MK-DADP method if the SURF features [7] are used
in recognition. Our method achieves the best performance in
4 out of 6 pairs of source-target domains when using deep
features. This result demonstrates that the proposed method
is competitive with the deep-learning based domain adaptation
methods.

G. Halftone and Edge Images

In this section, to verify the performance of MK-DADP in
a wide range of domains, we report the experimental results
on two new datasets obtained by performing half-toning and
edge detection from the office dataset. Fig. 8 illustrates se-
lected images from different domains. We obtain half-toning
with the dithering algorithm in [53], which imitates the effect of
jet-printing technology in the past. We use the Canny edge de-
tector [54] algorithm to obtain edge images, and the threshold is
set to 0.07. Following the same experimental setup as described
in the above section, we extract SURF features for both do-
mains. To compare with DASH-N, a two-layer networks is used
to learn the feature representation and subsequently perform
classification [24].

The recognition results are reported in Table VI and Table VII.
From these tables, we observe that MK-DADP obtains the best
performances in all pairs of source-target domains and that MK-
DADP (Hierarchical) also outperforms DASH-N. Again, this
demonstrates the capability of the proposed method for adapting
well to new domains.
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TABLE V
RECOGNITION RATE (%) ON OFFICE DATASET COMPARED WITH DEEP-LEARNING BASED METHODS

TABLE VI
RECOGNITION RATES OF DIFFERENT METHODS ON HALF-TONING DATASET: 10 COMMON CLASSES

TABLE VII
RECOGNITION RATES OF DIFFERENT METHODS ON EDGE DATASET: 10 COMMON CLASSES

VI. CONCLUSION

We propose a multi-kernel domain-adaptive sparse
representation-based classifier (MK-DASRC). Based on the de-
cision criterion of MK-DASRC, a multi-kernel based domain
adaptation discriminative projections method (MK-DADP) is
presented. By jointly learning the projections of data from both
domains and a common discriminative dictionary, MK-DADP
obtains a better representation of data from different domains
in the projected space. We presented an alternative iterative al-
gorithm used to solve the proposed approach. The experiment
results demonstrate that our method performs better than many
state-of-the-art approaches.

APPENDIX

To prove that Eq. (26) and Eq. (27) are the same, we rewrite
Eq. (8) as follows:

J1
w = tr

⎛

⎝
c∑

i=1

n1
i∑

j=1

(PT
1 φ(y1

i,j ) − Dδi(α1
i,j ))

× (PT
1 φ(y1

i,j ) − Dδi(α1
i,j ))

T

⎞

⎠

= tr

⎛

⎝
c∑

i=1

n1
i∑

j=1

(PT
1 φ(y1

i,j ) − Diα
1,i
i,j )

(PT
1 φ(y1

i,j ) − Diα
1,i
i,j )T

⎞

⎠

=
c∑

i=1

tr(PT
1 φ(Y1

i ) − DiΛ1,i
w )(PT

1 φ(Y1
i ) − DiΛ1,i

w )T

=
c∑

i=1

‖PT
1 φ(Y1

i ) − DiΛ1,i
w ‖2

F , (32)

where Λ1,i
w = [α1,i

1,1 ,α
1,i
1,2 , . . . ,α

1,i
c,n1

c
], α1,i

i,j is the representa-
tion coefficient vector with respect to class i, i = 1, . . . , c, j =
1, . . . , ni .

Similarly, Eq. (9) can be rewritten as

J1
b = tr

⎛

⎝
c∑

i=1

n1
i∑

j=1

∑

s �=i

(PT
1 φ(y1
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1 φ(y1
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‖PT
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F , (33)

where Λ1,s
b = [α1,s

1,1 ,α1,s
1,2 , . . . ,α1,s

c,n1
c
], α1,s

i,j is the representa-
tion coefficient vector with respect to s, s �= i.
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In the same way, the formulation in Eq. (10) and Eq. (11) for
the target domain can be rewritten as:

J2
w =

c∑

i=1

‖PT
2 φ(Y2

i ) − DiΛ2,i
w ‖2

F , (34)

and

J2
b =

c∑

i=1

‖PT
2 φ(Y2

i ) − DsΛ
2,s
b ‖2

F , (35)

where Λ2,i
w = [α2,i

1,1 ,α
2,i
1,2 , . . . ,α

2,i
c,n2

c
], and Λ2,s

b = [α2,s
1,1 ,α2,s

1,2 ,

· · · ,α2,s
c,n2

c
]. α2,i

i,j , α2,s
i,j are the coefficient vectors which corre-

sponding to class i and class s, respectively. Finally, we maxi-
mize J1

b and J2
b as follows:

max Jb = max{J1
b + J2

b }

= max
c∑

i=1

∑

s �=i

(‖PT φ(Yi) − DsΛs
b‖2

F

)
, (36)

and simultaneously minimize J1
w and J2

w as follows:

min Jw = min{J1
w + J2

w}

= min
c∑

i=1

(‖PT φ(Yi) − DiΛi
w‖2

F

)
, (37)

where

PT = [PT
1 ,PT

2 ], φ(Yi) =

[
φ(Y1

i ) 0

0 φ(Y2
i )

]
,Λs

b

= [Λ1,s
b ,Λ2,s

b ]

and Λi
w = [Λ1,s

w ,Λ2,s
w ]. Exploiting PT = AT φ(Y)T , Di =

PT φ(Y)Bi and Ds = PT φ(Y)Bs , the objective function can
be rewritten as follows

J = max
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